Exemplar-centered Supervised Shallow Parametric Data Embedding
نویسندگان
چکیده
Metric learning methods for dimensionality reduction in combination with k-Nearest Neighbors (kNN) have been extensively deployed in many classification, data embedding, and information retrieval applications. However, most of these approaches involve pairwise training data comparisons, and thus have quadratic computational complexity with respect to the size of training set, preventing them from scaling to fairly big datasets. Moreover, during testing, comparing test data against all the training data points is also expensive in terms of both computational cost and resources required. Furthermore, previous metrics are either too constrained or too expressive to be well learned. To effectively solve these issues, we present an exemplar-centered supervised shallow parametric data embedding model, using a Maximally Collapsing Metric Learning (MCML) objective. Our strategy learns a shallow high-order parametric embedding function and compares training/test data only with learned or precomputed exemplars, resulting in a cost function with linear computational complexity for both training and testing. We also empirically demonstrate, using several benchmark datasets, that for classification in two-dimensional embedding space, our approach not only gains speedup of kNN by hundreds of times, but also outperforms state-of-the-art supervised embedding approaches.
منابع مشابه
Parametric t-Distributed Stochastic Exemplar-centered Embedding
Parametric embedding methods such as parametric t-SNE (pt-SNE) have been widely adopted for data visualization and out-of-sample data embedding without further computationally expensive optimization or approximation. However, the performance of pt-SNE is highly sensitive to the hyper-parameter batch size due to conflicting optimization goals, and often produces dramatically different embeddings...
متن کاملA Shallow High-Order Parametric Approach to Data Visualization and Compression
Explicit high-order feature interactions efficiently capture essential structural knowledge about the data of interest and have been used for constructing generative models. We present a supervised discriminative High-Order Parametric Embedding (HOPE) approach to data visualization and compression. Compared to deep embedding models with complicated deep architectures, HOPE generates more effect...
متن کاملPairwise Exemplar Clustering
Exemplar-based clustering methods have been extensively shown to be effective in many clustering problems. They adaptively determine the number of clusters and hold the appealing advantage of not requiring the estimation of latent parameters, which is otherwise difficult in case of complicated parametric model and high dimensionality of the data. However, modeling arbitrary underlying distribut...
متن کاملSmooth Multi-Manifold Embedding for Robust Identity-Independent Head Pose Estimation
In this paper,wepropose a supervised SmoothMulti-Manifold Embedding (SMME) method for robust identity-independent head pose estimation. In order to handle the appearance variations caused by identity, we consider the pose data space as multiple manifolds in which each manifold characterizes the underlying subspace of subjects with similar appearance. We then propose a novel embedding criterion ...
متن کاملParametric Embedding for Class Visualization
We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mi...
متن کامل